
Größer auf AstroBin
Er befindet sich in 4940 Lichtjahre von uns, etwas links des Orion, im unscheinbaren Sternbild Einhorn (Moncerus).
Rund um die Astronomie
Er befindet sich in 4940 Lichtjahre von uns, etwas links des Orion, im unscheinbaren Sternbild Einhorn (Moncerus).
Er befindet sich inmitten der Milchstraße im Sternbild Schwan: Es ist ein sogenannter Wolf-Rayet Stern, mittlerweile kennt man schon eine Hundertschaft. Vor ein paar Jahre nur unter 200.
Das sind extrem massereiche Stern, mit bis zu 250 Sonnenmassen, die dann periodisch große Gasmengen ihrer Hülle ausschleudern. Kohlenstoffschwaden verdunkeln da immer wieder Bereiche und starke Winde ergeben dann diese Schalenartigen Strukturen.
Dieser helle Stern, fast im Zentrum des Nebel ist die Quelle: HD192163, als WR136 im Wolf-Rayet Sternen Katalog.
Sogar einer der Hellsten Vertreter, mit der 600 000 fachen Helligkeit der Sonne und hat dabei nur mehr etwa 21 an Sonnenmassen, die da übriggeblieben sind. Die Temperatur von 55 000 Grad produziert den hohen UV Lichtanteil, der dann die Atome wie Sauerstoff und Wasserstoff zum Leuchten anregt.
Von uns ist er 4700 Lichtjahre weit weg, der Durchmesser ist 25 Lichtjahre.
Teleskop: Lacerta „Newton ohne Namen“ 800/200, Lacerta L-DualBand30 Filter, Fotoapparat Olympus E-PL6 modifiziert. 70x 4minuten belichtet bei ISO1250
Ausgearbeitet mit PixInsight
NGC2264 im Sternbild Einhorn (Monocerus)
Links des Orion gibt es eine große Sternaggregation OB1, dessen Hauptteil der Weihnachtsbaumhaufen ist. Natürlich immer wieder gerne zu Weihnachten gezeigt:
Bislang hatte ich ihn nur einmal fotografiert, nämlich im Dezember 2016. Damals sind sich auch nur 12 Belichtungen mit 4 Minuten gewesen. Nicht wirklich viel, aber zum Glück ist er relativ hell, zumindest für unsere Fotoapparate.
Mit eigenen Augen können wir gerade mal den einen hellen Stern (15 Mon/S Mon / HR2456) sehen, der im Sternbild des Einhorn (Monocerus/Mon) das Horn symbolisiert. Aber auch nur in einer dunklen Nacht, da seine Helligkeit nur bei mag 4.65 liegt.
Das ganze ist ein relativ nur wenige Millionen Jahre altes Sternentstehungsgebiet in 2400 Lichtjahren Entfernung. Die heißen blauen Sterne regen den Wasserstoff zum charakteristischen rotem Leuchten an. Die blauen Bereiche unten sind Reflexionsnebel, die das Licht zu uns zurückwerfen. Die Größe an unserem Himmel ist mit 40′ (Bogenminuten) etwas größer als der Mond mit 30′.
Der hellste Stern hier S Mon hat die 80.000 fache Leuchtkraft der Sonnen und ist einer der heißesten und schwersten Sterne in unserer Galaxie. Der obere Teil ist als Konusnebel, LDN1607 bekannt, eine dunkle Staubsäule oberhalb, die hier alleine 7 Lichtjahre lang ist.
An unserem Himmel steht das ganze übrigens nahezu auf dem Kopf, also auf diesem Bild ist Oben Richtung Süden:
Entdeckt hatte ihn William Herschel am 26. Dezember 1785.
Über die Jahre wurden aber auch die Möglichkeiten der Bildbearbeitung auf ein neues Niveau gehoben, auch meine Fähigkeiten sie zu nutzen stiegen etwas.
Besonders die letzten paar Jahre brachten einen gewaltigen Fortschritt: Trainierte Neuronale Netzwerke, wie Sterne entfernen (StarNet++ oder StarXterminator) den Hintergrund zu ebnen (graXpert) oder schärfen durch blurXterminator. Sie alle ermöglichten jetzt auch dem fortgeschrittenen Astrofotografen, relativ einfach und schnell essentielle Bildbearbeitungsschritte zu setzen. Jeder einzelne Schritt hatte selbst den absoluten Pro’s davor stundenlange Arbeit beschert. Anfang Dezember 2023 wurde dann noch eine Version 2 / AI4 des mittlerweile legendären blurXterminator ausgeliefert, dass jetzt auch die verzogenen Sterne gegen den Bildrand repariert…
Also war Zeit für eine Neue Version….
Am 25.3.2022 flog wieder ein Asteroid nahe der Erde vorbei: Asteroid 2023 DZ2
Gegen 18:00 Uhr zog bei uns eine Sturm und Regenfront durch. 3 Stunden nach Frontdurchgang begann es vom Westen her tatsächlich aufzuklaren. Die Vorhersagen stimmten also recht gut.
Im Osten dauerte es dann noch so bis 21:50, bis es wohl wirklich klar wurde und auch die nötige Tiefe erreicht wurde um den ca mag +10 vorhergesagten Asteroiden zu sehen. Die nötige Tiefe überprüfte ich an schwachen, aber noch gut sichtbaren Sternen im Bildfeld. Die waren auf mag +12 – also 5x dunkler. Die auf den Einzelbildern erreichte tiefe sollte also passen.
Man muß auch bedenken: Wenn ein Objekt nicht am selben Punkt am Sensor bleibt, sondern während der Belichtung noch wandert, wird die Helligkeit aber noch weniger sein, weil ja das Licht auch verteilt wird….
Fixpunkt im Bildfeld war die helle Spica, die um diese Zeit noch recht tief im Osten stand. Die setzte ich links oben ins Bildfeld, denn der Asteroid sollte ja unterhalb vorbeiziehen.
Wer in der Astrofotografie mal dahin gekommen ist, seinen Bilder zu Stacken und/oder zu einem Panorama zusammenzufügen wird schnell erkennen dass die Bilder je nach eingesetzter Optik verzerrt sein können.
Je weitwinkeliger und günstiger die Optik, je größer das Problem.
Gerade bei den kleinen, weit winkeligen mFT Optiken gibt es das Problem. Dem tritt man entgegen, indem man das Bild elektronisch korrigiert und das Ergebnis in ein JPG „out of Camera = OOC“ Bild schreibt.
Auch Olympus Workspace kennt natürlich seine Optiken und kann aus einem RAW (ORF) daraus ein korrigiertes JPG Bild erzeugen. Das entschärft die Situation, zumindest für den Alltagsgebrauch.
Wer allerdings so wie ich seine Astrofotos zunächst aus dem RAW ungestreckt (linear) bearbeitet hat, hat keine korrigierten Bilder zur Verfügung,
Spätestens bei der Astrometrierung (Analyse des Bildfeldes und hinterlegen, der Koordinaten) kommt es entweder zu einer Abbruch, oder im Erfolgsfall zu beträchtlichen Abweichungen: Die Sterne gegen den Rand werden falsch eingezeichnet.
Damit fällt natürlich eine Photometrische Farbkalibrierung (anhand wissenschaftlicher Sternkatalogen) seiner Bilder flach. Ein essentieller Schritt um einigermaßen belastbare Farben in seinen Deep Sky Bildern bekommen zu können.
Bei starken Weitwinkel kommt man zum Glück üblicherweise mit einer Belichtungsserie durch. Da man da mit einer Nachführung den Sternen folgt, bleiben, zumindest solange man nichts verstellt, die Sterne am selben Ort am Foto. Ohne Nachführung wird aber durch unterschiedlicher Verzerrung der Optik, je nachdem wo im Bildfeld der Stern steht, ein Stacken hinterher schwierig bis unmöglich.
Bei der Astrometrierung kann man sich eine Bild der Verzerrung seiner Optik ausgeben lassen. Das zeigt den Unterschied zwischen der exakten Postion in Sternkatalogen und seinem eigenem Bild.
Gerade das Olympus mFT12/2 bietet hier einen geradezu psychedelischen Anblick:
Bekomme ich mittlerweile eine Astrometrische Lösung für das mFT12/2, ist es mir mit dem mFT8/1.8 nicht geglückt. Ist aber auch etwas sinnlos….
Das mFT8/1.8 bietet sich natürlich an, extreme Widefields zu machen. Damit werden natürlich auch die Nachteile bei weiten Feldern potenziert: Riesige Helligkeitsunterschiede und man bekommt sehr schnell störendes ins Bild.
Hier mal ein Bild der Sommer Milchstraße mit dem Olympus mFT8/1.8:
Das gesamte Feld des 8mm (allerdings auf 66% verkleinert) gibt es auf AstroBin
Links die sehr helle Spur war die ISS und Rechts ein Flair eines Satelliten.
Im unteren Drittel links erkennt man die Andromeda Galaxie (M31) links oberhalb der Flugzeugspur – hier einfach herausgeschnitten:
Im Gegensatz zu den mFT7/14 Optiken, wo naturgemäß durch die Korrektur der Rand bei 7mm stark verzerrte wird, bildet das Fischauge mFT8/1.8 auch gegen den Rand hin gut ab.
Wer jetzt an ein defishen denkt:
Bei punktförmigen Lichtquellen wie Sterne es sind, sieht man es halt extrem, wie sie in die Länge gezogen werden.
Beim Herauszuschneiden wird der nutzbare ebene Bereich dann schon recht klein.
Mir ist aber auch klar, dass es hier ein spezifisches Problem.
Nehme ich jetzt mein 7-14 dann ist natürlich der Rand auch mit entsprechend bekanntem Problem behaftet. Selbst beim 12mm sind natürlich die Koma gegen den Rand unschwer zu ignorieren. Aber das ist halt so, geht ja nicht anders.
Dafür sind natürlich die Sternchen gegen den Rand des 8mm Bildfeldes so gut wie sonst nie.
Dass es so sein wird, habe ich aber vor Kauf geahnt 🙂
Bei anderen Bilder kann man natürlich die Korrekturen wesentlich schwächer durchführen lassen, soviel wie man halt braucht.
Solange man keine wirklichen Anhaltspunkte hat und etwas vermessen will, passt es 🙂
Die Sonne hat es bei mir bislang schwer am Neujahrstag 2023 durch den Nebel zu kommen.
So stark gedämpft kann man mit einem Teleobjektiv aber recht leicht ein Bild machen, ohne sich oder die Kamera zu gefährden….
Die Sonne befindet sich ja gerade im Anstieg der Aktivität und so sind jetzt oft viele größere Sonnenflecken oberhalb und unterhalb des Sonnenäquators zu finden.
Zu Beginn des 8-14 Jährigen Zyklus starten sie weit voneinander entfernt. Es Sind Magnetfelder, die da aus der Sonnenoberfläche hervorbrechen und sie haben unterschiedliche Polarität. im Lauf des Zyklus wandern sie dann Richtung Äquator und damit beginnt erneut eine stille Phase und der Zyklus beginnt erneut.
Am 21.12.2020 fand eine sehr enge Begegnung der Planeten Jupiter und Saturn statt. Das ist an sich alle 20 Jahre der Fall, aber eine ähnlich enge bis 0,1 Grad erst wieder in 60 Jahren.
Hier ein Bild vom 18.12.2020 mit dem mFT100-400 Teleobjektiv und dem 1,4x Telekonverter.
Eine Montage aus mehreren Bildserien von 1s, 1/5s 1/15 und 1/50s Belichtungszeit:
Das Weltraumteleskop Neowise (Near-Earth Object Wide-field Infrared Survey Explorer) entdeckte im März 2020 einen neuen Kometen, dessen Bahn innerhalb der Merkurbahn um die Sonne verlief. Der Sonnennächste Punk wurde am 3. Juli 2020 mit nur 44 Mio. km erreicht, die Merkurbahn kreuzte er am 12. Juli. Diese Passage überlebte der ca. 5 km große Komet und er wurde dann zunächst bei uns am Morgenhimmel kurz vor Sonnenaufgang sichtbar, später dann bis vor Mitternacht am Abendhimmel und dann am Morgenhimmel.
Am 23. Juli wird er in 103 Mio km an der Erde vorbeifliegen, der nahe Vorbeiflug am Jupiter wird seine Bahn so verändern, dass er erst um das Jahr 8704 wieder ins innere Sonnensystem zurückstürzen wird.
Er müsste die Erde schonmal um das Jahr 2399 v. Chr. besucht haben.
Der Staubschweif war eindrucksvoll mit freiem Auge zu sehen, der zarte feine Schweif aus ionisierten Gas hatte bis zu 25 Grad am Himmel.
Hier mein Bild vom 13.7.2020, entstanden 10 Minuten vor und nach Mitternacht.
in Groß auf Astrobin
Weblink:
WikiPedia: C/2020 F3 Neowise
Volksternwarte Bonn: Spektroskopische Analyse
Das Sternbild ist ein recht unscheinbares Frühlingssternbild, zischen Sternbild Löwe, Bärenhüter (Boo) und Großer Wagen/Große Bärin, oberhalb des Sternbild Jungfrau.
3 Hauptsterne und der Größere aber auch schwächere offene Sternhaufen Mel 111 sind aber bei dunklem Himmel auszumachen:
Ca 90 Grad verdreht ein tief belichtetes Bild des Sternbild:
Bei den Vergrößerungen von Fernrohren verliert der Coma Sternhaufen (MEL111) schnell an Attraktivität, zu weit sind die Abstände.
Das Bildfeld hier ist um 90 Grad gedreht als quer statt Hochformat und man sieht ihn unten rechts die vielen hellen Sterne.
Geübte erkennen links im Bild den Virgosuperhaufen und die Markarjansche Kette mit seinen 200 Galaxien. Sie beherbergen auch M87 – die Galaxie wo vor kurzen dieses ikonische Bild eines Schwarzen Loch gemacht wurde.
Etwas oberhalb von MEL111 findet ihr in Schräglage die berühmte Nadelgalaxie in der Bildmitte oberen Viertel diese Größere Galaxie ist unter dem Namen „Schwarzes Auge“ (M64) bekannt.
Interessant ist dieser Bereich hinunter Richtung Sternbild Jungfrau (Vir/Virgo) (der helle Stern links oben ist bereist ein Stern im der Jungfrau) deshalb, weil sich hier der Coma und Virgohaufen mit dem Virgo Superhaufen befindet. Hier stehen an die 2000 Galaxien von 65 Mio Lichtjahren bis 250 Mio Lichtjahren. Unsere Milchstraße in der Lokalen Gruppe gehören zu diesem Gravitativ gebundenen Galaxienstrom.
Nahe des Sterns ß-COM, in der Ecke des Sternbildes, befindet sich der Galaktische Norden. Wir blicken Senkrecht der Milchstraße hinaus und so stört praktisch kaum Staub und Sterne die Sicht in die Tiefen des Weltraum.
In unmittelbarer Nähe findet man den Galaxienclusters Abell 1656, auch Coma B um NGC 4889 genannt. So findet man auf diesem Bild eine große Anzahl an Galaxien im Hintergrund:
Neben den vielen kleinen gibt es auch ein paar Große. Die hatte ich zu Beginn meiner Astrofotoversuche gemacht und bedürfen noch starken Verbesserungen.
Ein der schönsten Galaxien in Kantenlage: Die Haarnadelgalaxie ( NGC4565)
M64, die „Schwarzes Auge“ Galaxie (Black eyed). Eine Dunkelwolke nördlich des Zentrums verdeckt hier Teile des hellen „Bulg“
Der hellste Vertreter der COM Galaxiengruppe ist NGC4725, gleich in der Nähe der Haarnadelgalaxie (NGC4565)
An der Grenze zum Sternbild Jungfrau findet man auch die Silberstreif Galaxie – NGC 4216
Merkur ist unsere innerster Planet. Entsprechend schwierig ist es ihn zu beobachten, weil er nie weit der Sonne steht.
Wenn er aber weit quer ab der Sonne steht, kann man ihn als kleinen hellen „Stern“ mit mag 0 (durch den Tiefen stand in der Atmosphäre) ca 45-90 Minuten nach Sonnenuntergang oder Aufgang (je nach dem) finden.
Er ist dann von uns ca 1 AE Astronomische Einheit (=Abstand Erde – Sonne) also 150 Mio km von uns entfernt. Er hat dann eine Größe von 6,7 Bogensekunden und zeigt dann natürlich auch entsprechend Phase.
So tief in der Atmosphäre ist das 8 fache an Luftmasse zum Zenit zu überwinden, so ist es entsprechend schwierig gute Bilder davon zu erhalten.
Ein Bild vom 8.2.2020
149.880 Mio Km 1.002AE 60,2% Beleuchtet, Größe 6,72″