Im Herbst vor Sonnenuntergang und Frühling nach Sonnenuntergang kann man diese Leuchterscheinung am Himmel sehen.
Sie zieht sich entlang der Tierkreiszeichen (Zodiak). Daher der Name. In der Scheibe um die Sonne, wo sich unsere Planeten befinden (Ekliptik) ist feinster Staub, an dem sich das Sonnenlicht streut. Da dabei die Energie abnimmt, ist es rötlich.
Viele Staubpartikel sind es ja nicht, gerade mal 10 pro Kubikkilometer, und mit einer Größe von 0,001 bis 0,1 mm auch nicht sonderlich groß.
Aber die Menge macht’s.
Zum ersten mal habe ich es früh morgens 2-3 Stunden vor Sonnenaufgang im sehr südlich Ägypten bemerkt. Leider waren über dem Meer gerade etwas Wolken, sodass die aufgehende Venus, die gerade bei Spica stand (unten der hellere Stern) nicht mehr am Bild war.
Von der Helligkeit her, war das Zodiakallicht in etwa mit der Helligkeit der Wintermilchstraße vergleichbar, die sich links des Orion herunterzieht.
Also nicht wirklich stark, man wird diese Leuchterscheinung also bei uns wohl nur unter günstigen Bedingungen bei einen sehr klaren und dunklen Himmel beobachten können.
Aber sicher sehr stark, wenn man gerade in diesem Bereich versucht, tief belichtete Bilder zu machen.
Kategorie: Astronomie
Rund um die Astronomie
27.7.2018 Totale Mondfinsternis
Die längste Mondfinsternis des 21. Jahrhunderts fand am 27.7.2018 statt. Das ganze garniert mit weiteren Attraktionen:
Der Mond erreichte auch gerade seinen weiteste Entfernung von der Erde, und es war somit der kleinste Vollmond im Jahr.
Der Mars war auch gerade in Opposition (5,9 Grad unterhalb des Mondes). Da er dieser Tage mit 57 Mio Km so nahe der Erde steht wie erst wieder 2035 war er sogar heller als Jupiter. Ein wunderbarer Anblick der zwei roten Himmelskörper:
Die Beobachtung gestaltete sich als nicht ganz einfach, denn Anfangs sah es ganz so aus, dass das Wetter nicht mitspielte.
Etwas nach der Hälfte des Ereignisses gaben die Wolken die Sicht frei. Der tiefe Stand im Südosten machte die Sache nicht einfacher.
4 Jahre Astrofotografie
Am 27.7.2018 war nicht nur eine Mondfinsternis der besonderen (längste des Jahrhunderts, gleichzeitig Mars in Opposition, der dieser Tage auch noch die größte Erdnähe erreichte und mehr) Art:
An diesem Tag vor 4 Jahren war meine Einstieg in die Astrofotografie.
Habe ich es bereut? Klare Antwort: Nein!
Die Basis dazu legte sicher die Auswahl des für mich richtigen Gerätes. Der Support den ich hier vor Ort durch Lacerta / Teleskop Austria und vor allem deren Mitarbeitern wie Tommy Nawratil, macht es leicht, die kleineren und größeren Probleme zu lösen. So würde ich auch heute noch nichts anderes kaufen wollen!
Dass ich Rückblickend so schnell so weit gekommen bin, als ich je zu hoffen wagte, wurde sicher durch den Austausch mit der lokalen Astrokommunity sei es im Astronomieforum.at oder durch den Erfahrungsaustausch bei unsere lokalen „Selbsthilfgruppe“ DSIG.at., das Thomas Henne organisiert.
Mit den technisch so perfekten Gerätschaften war ich dann relativ schnell an dem Punkt, dass ich mich um eine bessere Bildbearbeitung kümmern musste:
So kam es für mich gerade Richtig, daß Tommy konstatierte: „Wir haben jetzt beste Gerätschaften, aber die Bildbearbeitung hat noch großes Potential“. So wurde bei DSIG der Schwerpunkt „PixInsight vs. Photoshop“ gesetzt. Wiederum war es Tommy, der uns dann an zwei Wochenenden bei DSIG.at einen Einstieg in Pix Insight ermöglichte. Gerald Wechselberger führte uns weiter hinein in die Welt von PixMath.
Das alles hob recht schnell die möglichen Ergebnisse auf ein ganz anders Niveau.
Weitere vertiefendere Schulungen folgten. Zuletzt die PixInsight Workshop Module mit Herbert Walter und erneut Tommy bei der NÖ Volkssternwarte „Antares“.
Genug der „Technik“
Schon bald stellte ich auch fest, dass ich mit relativ wenig Aufwand bessere Bilder machen kann, als ich in den Astronomiebüchern meiner Kindheit vorfand.
Unser Sternenhimmel bietet eine Unzahl an Objekten, die es allesamt lohnen abgelichtet zu werden.
Die notwendige Bearbeitung lässt sich hinterher beliebig vertiefen und nebenher lernt man vieles besser verstehen, was fotografische Zusammenhänge betrifft.
Auch wenn die Zahl der nutzbaren Nächte durch das Wetter stark beschnitten ist: Wenn es mal passt, dann holt man sich was vom Himmel!
….es ist einfach eine Erweiterung der Möglichkeit mehr, Bilder zu machen.
Epsilon Lyrae System
Daumenbreit (2 Grad) neben der Vega (Wega) findet man findet man ε – Lyrae. Die Vega ist der hellste Stern des Sommerdreiecks, der im Sommer von Ost nach West hoch oben in Zenit nähe zieht.
Diese Sternsystem ist 160 LJ von uns weg, und besteht in sich aus Doppelsternen. Weitere Begleiter konnten mittlerweile auch nachgewiesen werden.
ε1 und ε2 Lyrae sind zwei 4,6 mag helle Sterne mit 3,5 Bogenminuten Abstand, das ist 1/10 der Größe des Mondes und Sonne am Himmel. Somit sind sie für schärfste Augen bereits visuell trennbar. Fotografisch sind sie sehr leicht zu trennen.
Ein schon größere Herausforderung allerdings ist es, die zwei Komponenten A/B und C/D aus denen ε1 und ε2 Lyr besteht auch noch aufzutrennen:
Der Abstand der Komponente ε1 A/B und ε2 C/D beträgt aber nur noch 2,3 bezw. 2,4 Bogensekunden.
In dieser Größenordnung liegt allerdings schon das normale schlechte Seeing (Luftflimmern) meines Himmels. Nur in Ausnahmenächten wird mir unter 2 arcsec (Bogensekunden) angezeigt. Das beste Seeing von der Erdoberfläche aus wird bei ungefähr 0,7 – 1 Bogensekunde liegen. Durch Mitteln vieler Bilder kann aber die Auflösung erhöht werden.
Die Helligkeit der Sterne A, C und D ist mit um die mag 5-5,4 in etwa gleich groß, nur B ist mit mag 6 deutlich schwächer. Der Unterschied von einer mag stufe ist ja in etwas 2,5x weniger Licht.
Die Sterne A/B brauchen 1804 Jahre um sich zu umkreisen, C/D 724 Jahre.
1985 wurde bestätigt, dass ε2 ein Dreifachsystem ist. Allerdings nur Spektroskopisch, denn mit 0,2 arcsec Abstand ist er direkt visuell nicht sichtbar.
Stacken von Mond/Sonne und Planeten
„Ein Bild, ist kein Bild“ lautet einer der Sprüche in der Astrofotografie, denn die erzielbare Bildqualität wird erheblich gemindert durch verstärktes Rauschen und der Luftunruhe. Ersteres durch dem wenigen Licht das uns zur Verfügung steht, sodass wir über längere Zeit belichten müssen und dabei natürlich auch eine höhere ISO verwenden. Die Luftunruhe merkt man, je stärker man vergrößert. Sie schwankt sehr, und es kann durchaus sein, dass ein Bild kurzer Belichtungszeit fast perfekt ist, das nächste aber sehr verschwommen.
Bei der Fotografie des Nachhimmels steht eher das Bildrauschen eine Rolle, es sind ja großflächigere Bereiche und Objekte mit Brennweiten von den üblichen Fotooptiken bis so 1000mm, aber die Belichtungszeiten liegen eben in etwa zwischen 1 und 8 Minuten bei ISO800, je nach verfügbarer Lichtstärke.
Mond, Sonne und Planeten sind dagegen hell bis sehr hell, daher bleiben die Belichtungszeiten oft deutlich unter einer Sekunde, oft unter 1/100-1/4000s. Daher spielt hier das Sensorrauschen weniger eine Rolle, dafür aber die Luftunruhe. Die Planeten sind dazu sehr klein und bedürfen dann einer extrem starken Vergrößerung.
Ein Methode um 1 gutes Bild zu erhalten ist es: Viele Bilder zu machen und dann das Bild heraussuchen, wo die Luft am ruhigsten war. Das nennt sich „Lucky Image„. Wer auf höchste Auflösung steht, wird aber auch da Bildrauschen vorfinden, weil man ja dann oft eine 100% Ansicht herausschneidet um eine vernünftige Größe zu bekommen. Und die Waffe gegen Rauschen ist es halt, möglichst viele Bilder zu mitteln. Wer nämlich ein verrauschtes Bild versucht zu schärfen wird die Artefakte mitverstärken, wer entrauscht, wird feine Details mit entsorgen. Daher wird man möglichst viele Bilder stacken wollen und zwar nur möglichst viele der spärlichen „Lucky Images“.
Anders als bei „Deep Sky“ Bildern, wo es ja jede Menge Sterne gibt, die der Stacking Software als Anhaltspunkt zum Zusammenrechnen dienen, hat man es bei Mond/Sonne und Planeten mit großflächigen Strukturen zu tun. Man braucht also spezielle Software, die solches erkennt.
Auch hat man es bei den „Deep Skybildern“ mit einer vergleichsweisen überschaubaren Anzahl von Einzelbildern zu tun, so um die 30-300 Bilder um eine Zahl zu nennen, bei Planeten bewegt man sich da dann schon eher zwischen 1000 und 10.000 Bilder pro Serie! Das muss man erstmals speichern, beurteilen und dann bearbeiten wollen/können.
Daher ist die Planetenfotografie immer schon ein Domaine der „Webcams“: Man benötigt nur einen kleinen Sensor und produziert ein möglichst unkomprimiertes Video. Je höher die Framerate (USB2 vs. USB3), aus desto mehr Einzelbilder besteht das Video. Da man fast nur das winzige Objekt am Film hat, bleibt die Dateimenge noch im Rahmen. Bei Mond wird bei diesen Vergrößerungen nur mehr ein kleiner Teil abgebildet, das aber perfekt! Ein Mosaik aus 10-50 Bildern ergibt dann ein höchst aufgelöstes Mond Bild. Dagegen kann kein Stack aus der Fotokamera mithalten…..aber wir wollen hier betrachten, was wir mit unseren Fotokameras anstellen können:
Mond und Sonne sind bei unseren FT Sensoren bei ca 1,1m Brennweite formatfüllend. Wer einen 1,4x Telekonverter sein eigen nennt, kommt also bequem mit 800mm Brennweite dahin. Mit „Silent Shutter“ kann man bis zu 60 Bilder / Sekunde hochauflösend erhalten. Also man kann relativ leicht seine vielen hundert Einzelbilder erhalten. Natürlich verwenden wir RAW. Bei einem HD-Video reichen aber 800mm Brennweite, weil selbst ein HD-Video nur ein Bruchteil der maximal möglichen Auflösung eines 16 oder 20 MPixel Sensors besitzt. Bei Jupiter kommt ein Problem dazu: Er dreht sich sehr schnell (nur etwas über 9 Stunden) sodass man ab 1 Minute bereits Verwischung sehen könnte.
Wer die HQ-Auflösung (50-70 MPixel derzeit) für seine Bilder vom Mond/Sonne benützt, erhält zwar wirklich eindrucksvolle Bilder, aber da 8 Bilder in der Kamera versetzt zusammengerechnet werden müssen wird das wohl nur bei absolut perfekten Seeing einen Sinn machen. Und diesen sehr sehr seltenen Moment muss man erst mal erwischen. Zwischendurch probieren kann man es ja mal….
Seit langem gibt es spezialisierte Software für die Planetenfotografie: Giotto oder Registax zum Beispiel. Aber sie werden seit geraumer Zeit nicht mehr weiterentwickelt und sind nur für kleine Dateigrößen ausgelegt. Einzig mit FITSworks konnte ich bis 20 MPixel Bilder des Mondes erfolgreich stacken. Bei HR Dateien, skalierte FITSWork stark herunter. Eine Stack von ausgewählten 100 Bildern dauert so einen halben bis ganzen Tag….
Schon ein „Lucky Image“ aus der Fülle der Bilder herauszufischen ist sehr anstrengend. Zum Glück gibt es da aber jetzt Hilfe: AutoStakkert (AS!). Wer sich dann noch mit Planetenfotografie herum schlägt, wird schnell den Wunsch verspüren, das viele schwarze Rundherum wegzuschneiden. Das erledigt souverän PIPP (Planetary Imaging PreProcessor). Als Startdatei kann man sowohl Video (AVI/MOV etc) wie auch TIFF oder ORF Files verwendet. Das Ergebnis dann als TIFF/FITS oder unkomprimiertes AVI Speichern lassen. Das versteht dann AS!.
Wer sich ffmpeg herunterlädt und das ffmpeg.exe in das Verzeichnis von AS! legt, der kann direkt auch die MOV Datei seiner Kamera als Ausgangsbasis verwenden. Wer allerdings ORF Files in AS! stacken will, muss sie vorher in TIFF Files umwandeln . Also entweder mit OlyViewer, oder PIPP oder was auch immer das ORF File als TIFF exportieren.
Stacken mit Autostakkert:
1.) Zuerst seine Dateien (TIFF) öffnen oder als AVI Video (MOV wenn ffmpeg vorhanden).
2.) Analyse: Es erfolgt eine Analyse der Einzelbilder
Man sieht dann eine Status der Verteilung der Bildqualität der Bilder in der Kombigrafik: Die Schwankung der Bildqualität der Reihenfolge der Einzelbilder, die Grüne Linie zeigt in etwa den Verlauf der Qualität der gesamten Bildserie.
In der Vorschau wählt man die Bereiche, die dann beim Stacken analysiert werden und herangezogen werden. Der Clou dabei: Es werden von den gewählten Ausschnitten nur die Bildinformationen gestackt, die am besten sind, was bei großflächigen Objekten wie Mond / Sonne ja durchaus abweicht, denn mal ist ein einem Bereich ein Teil scharf, der andere aber nicht. Es wird also nicht stur einfach Bild x + y + z gestackt sondern wirklich nur der Bereich aus den Bildern der jeweils am besten ist. Daher sollten diese Bereiche auch überlappen. Aber dazu gibt es auch Anleitungen auf der AS! Seite (wenn auch nur auf Englisch). Da ist viel Platz zum Optimieren seiner Bildserie.
Stack Option:
Man wählt sein Ausgabeformat des Stacks. Dann kann man sich aussuchen. AS! kann verschieden viele „der am besten befundenen“ Bildern stacken und legt dann ein Verzeichnis an wo die fertigen Stacks hineinkommen, mit entsprechender Bezeichnung im Filenamen. (liegt ein Verzeichnis unterhalb des Stammverzeichnis der Input Datei(en). Man kann also gleich mal je 4 verschiedene Stack’s anfertigen lassen: Entweder eine fixe Anzahl der gestackten Bilder oder Prozent Zahl. Wie viele der Bilder gestackt werden sollen, hängt sehr von der Qualität der Rohbilder ab. Sind sehr viele Bilder schlecht, wird man eher mit wenigen Bildern zum stacken sein Auslangen finden müssen.
Das ganze geht überraschend schnell !!
Da ich die gestackten Bilder hinterher erst bearbeite und brauch ich keine der angebotenen Bildverbesserungen die PIPP oder AS! bieten.
Hier ein 1:1 Ausschnitt eines Stacks der 4 besten Bilder aus 347:
Die kleineren klar sichtbaren Krater messen um die 4-5 km Durchmesser.
Hier noch ein erster Versuch am Jupiter:
50 aus 200 Bildern 1:1
Mittlerweile habe ich auch probiert HR Files aus der E-M1.II (70 MPixel !) zu stacken. Ich hatte dazu 28 Bilder zur Verügung die ich als TIFF exportierte. Das als Beste durch AS! gezeigte Bild habe ich dann quasi als OOC (out of cam) bearbeitet. Weiters lies ich dann AS! jeweils folgende Stacks erstellen: 4,5,6,7 beste Frames und 12, 15, 25 und 30%. Mit einem Computer mit einer Ryzen7 1700 CPU und 32GB RAM klappte das innerhalb 10-15 Minuten. Während der Bearbeitung wurden 27 GB RAM genutzt und alle 16 Threads der 8 Kern CPU wurden benutzt.
Fotografie / Astrofotografie – zwei Welten?
Astrofotografie eine andere Art von Fotografie.
Irgendwann packt es den Einen oder Andern, sich abseits der „normalen“ Fotografie zu versuchen. Am besten einfach probieren, dann sieht man früher oder später, wo die Problemzonen liegen. Hier versuche ich mal darauf einzugehen.
Vorweg: Gerade Anfangs versteht man oft nicht immer gleich, worum es da überhaupt geht und so erhält man rasch den Eindruck: Das ist mir zu Hoch, dass schaff man nie!
Auch mir ist es so ergangen beim initialen Einlesen in die Thematik um mir ein Bild zu machen, was bräuchte ich an Ausrüstung und ob ich das jemals selbst hinbekommen würde. Heute nach 3,5 Jahren bereue ich nicht, diesen Schritt gewagt zu haben.
Das was einem wohl als erstes auffällt:
Belichtungszeit
Sehen wir uns mal ein normales Foto an:
Ein typisches Urlaubsbild. F/10, 1/200s, ISO100 (damals mit der E-300 die Nennempfindlichkeit)
Das Histogramm zeigt uns die Anzahl und Helligkeitsverteilung der Pixel der roten, grünen und blauen Pixel an aus denen ja ein Farbbild (RGB Bild) besteht. Links im dunklen Bereich und rechts im hellen Bereich ist nichts wesentliches weggeschnitten. Da braucht es nicht viel Bearbeitung – vielleicht den dunklen Bereich der fast schwarzen Lava etwas anheben um noch Struktur zu generieren und das Bild halt auf das gewünschte beschneiden.
Ein Stativ braucht man hier kaum, die Belichtungszeit ist kurz genug als dass man verwackeln könnte.
Fotografiert man in JPG wird man aber bei diesem Bild wegen des großen Helligkeitsumfanges (weiße Mauer – fast schwarze Lava im Schatten) schon mal merken, dass man beim Spielen mit dem Tonwerten im Himmel sogenannte Tonwertabrisse ( Sichtbare Streifen abgestufter Helligkeit) bekommt. Grund ist der: Beim JPG Bild haben die 3 Farbkanäle eine Bittiefe von 8bit, was 256 (2^8) möglichen Abstufungen entspricht. Mehr als unser Auge sehen kann und zusammen gemixt (256*256*256) die bekannten 16,7 Mio unterschiedliche Farbabstufungen ergibt (siehe: Die richtige Belichtung). Dehnt man dann gezielt einen Bereich im hellen oder dunklen, sieht man dann bald mal die Helligkeitssprünge am Ergebnis. Abhilfe ist dann in RAW zu fotografieren, den sie bieten hier 12bit Auflösung, was schon 4096 Abstufungen pro Farbkanal entspricht, also kann man hinterher mehr „herauskitzeln“.
In der gelebten Praxis: Bei gut ausgeleuchteten Alltagsszenerien reicht oft das JPG, so wie es aus der Kamera kommt. Bei schwierigen Situation ist ein zusätzliches RAW empfohlen, Auch wenn man jetzt vielleicht damit nichts anfangen kann – später vielleicht doch. In der Astrofotografie ist RAW Pflicht.
Solche Verhältnisse findet man auch noch an unseren zwei hellsten Himmelskörpern: Mond und Sonne (natürlich nur durch entsprechende dafür geeignete Spezialfilter). Sie erlaube auch Belichtungszeiten zwischen angenehmen 1/100-1/4000 Sekunden bei normaleren ISO Bereichen. Ein Stativ ist dennoch empfohlen!
Anders am dunklen Sternenhimmel:
Es zeigt den Große Wagen mit einem Normalobjektiv (bei Olympus 25mm). Es wurde typischerweise so belichtet, wie man es für „Deep Sky“ Bilder braucht.
Die Belichtungsdaten waren: F/3,2, 240s, ISO800 mit der E-M1.II (geht auch mit jeder anderen OM-D oder E-PL6-9 Kamera so). Einfach ein Screenshot ohne Bearbeitung wenn ich es in ACDsee ansehe.
Wer jetzt mal nachrechnet kommt drauf, dass man hier typischer weise mit 500.000 bis weit über 1 Million mal weniger Licht hat. Um entsprechendes Signal am Sensor zu bekommen, dass auch über dem Rauschen liegt, muss man entsprechend lange belichten.
Was zeigt uns das Histogramm: Zunächst mal die vielen Pixel des Himmelshintergrund. Sie liegen im 1/3 des Histogramms. Da die Darstellung nicht linear ist, heißt das nicht unbedingt dass man auch tatsächlich 1/3 der Gesamtbelichtung des Sensorpixel ausgeschöpft hat. Aber immerhin liegt der Himmelshintergrund deutlich von stark verrauschten linken Rand weg.
Wichtiger ist aber das, was man nicht sieht: Die paar Pixel der hellen Sterne. Das sofort ins Auge fallende Muster der hellen Sterne, die das Muster bilden. Die sind so hell, dass man sie bei uns in der Großstadt sehen kann. Natürlich sind die im Zentrum überbelichtet. An sich sollten sie ja punktförmig sein, aber das Flimmern der Luft weitet das Signal auf eine größere Fläche, was wiederum die Helligkeit durch Verteilung stark absenkt und es so möglich macht dennoch die Farben ins Spiel zu bringen. Überbelichtete haben ja alle Pixel gesättigt, was dann ja ein reines weiß ergibt.
Auch wenn die Sterne sehr hell sind, die geringe Anzahl der hellen Pixelwerte kommt gegen die extrem vielen Pixel im dunkleren Bereich nicht an, wird also am rechten Rand des Histogramms nicht mehr angezeigt.
Man sieht auch dass der Grüne Anteil relativ hell ist, das ist der typische Landhimmel etwas weiter weg einer Großstadt. Der Himmel so „OOC“ (out of Cam) also wie die Kamera den Weißabgleich macht, ist schon recht gut dafür, dass sie nicht für solche extreme Situationen programmiert ist. Einen richtigen Weißabgleich erkennt man daran, dass die 3 Buckel der RGB Kanäle exakt übereinander liegen. Das gilt natürlich nur da, wo man wirklich neutralen Himmel hat.
Und was man schwer sieht, hätte ich es nicht markiert: Da war gerade ein Komet (P41/Tuttle-Giacobini-Kresak) und auf diesem kleinem Bild gar nicht sieht, wenn man nicht weiß wo: Die Feuerrad-Galaxie (M101) eine bekannte Galaxie von der Größe des Vollmondes und M51. Um solches geht es uns bei der Fotografie von Deep Sky Objekten (Objekte außerhalb des Sonnensystems). Misst man deren Helligkeit würde man sehen: Sie liegt an der rechten Flanke des Histogrammbuckels bis leicht davor. Während man hellere Kometen durch das große diffuse leuchten schon mal finden kann, eine Galaxie wie M101 oder M51 kaum mehr am Rohbild.
Auf vielen, sogenannten „tief belichteten“ Bildern wird man jede Menge Staub und Dunkelwolken erkennen. Tatsächlich gibt es keinen Bereich am Himmel, bei dem man mit nicht mit genügend langer Belichtung und vor allem Akribie bei der Ausarbeitung keinen sehen wird. Diese Bereiche liegen vor dem Himmelshintergrundbuckel.
Also hinterher einfach das Bild so zu beschneiden, dass man alles weg wirft, dass vor dem Peak (der ja dem Himmelshintergrund entspricht) liegt führt zwar zu einem schön dunklen Himmel, aber auch zum Vernichten von der schwachen Strukturen.
Die nötigen langen Belichtungszeiten bringen eine Vielzahl an weiteren Problemen mit sich.
Bildrauschen
Gerade in der „normalen“ Fotografie wird das extrem überbewertet. Je wärmer, desto mehr rauscht ein Sensor, das ist einfach so. Das Rauschen setzt sich aus verschiedenen Fehlerquellen zusammen: Jeder Sensor hat Pixel, die nicht so arbeiten wie sie sollen. Belichtet man länger, dann fallen sie einem stärker auf. Durch einen Dunkelbildabzug ist das beherrschbar.
Schon schwieriger ist das Rauschen das nach Dunkelbildabzug im Bild verbleibt. Und da hilf nur eines: Möglichst viele Bilder zusammenrechnen.
Die Spezialkameras für Astrofotografie sind daher auch gekühlt, damit man auch ein möglichst gutes Signal/Rauschverhältnis bekommt.
Hie mal das Bild von vorhin nach zusammenrechnen von 43 Bildern
In groß und noch größer findet man das Bild auf AstroBin
Stativ/Montierung
Auch sehr schnell merkt man, dass man mit einem fixen stabilen Fotostativ jenseits von extrem Weitwinkel schnell an die Grenzen des Lichtsammeln stößt. Man braucht also eine Nachführung. Für den Einsatz mit Fotoobjektive gibt es gut und günstige Tracker. Die Sache wird aber immer schwieriger sobald die Brennweite steigt braucht es mehr Präzision in der Nachführung. Dazu kommt: Je mehr Brennweite, desto geringer die „bezahlbare“ und vom Gewicht her auch handhabbare minimale Blendenzahl. Man muss dann auch noch zusätzlich länger Belichten um die nötige Lichtmenge zu sammeln.
Bei größeren Brennweiten benötigt man dann eine richtige Montierung. Sie muss präzise auf den Himmelspol eingerichtet werden, aber selbst da wird man ab einer gewissen Brennweite nicht mehr ohne Guiding wegkommen.
Ein sehr gute Montierung ist meist der teuerste Teil einer guten Astrofotoausstattung, aber wenn man sie gut dimensioniert auch nur einmal anzuschaffen. Ohne präzise Nachführung werden auch die Einzelbilder aus den besten Teleskopen / Linsen und Fotoapparaten nichts.
Bildbearbeitung
Um aber aus den gestackten Rohbildern wirklich etwas herauszuholen, bedarf es einer tiefergehenden Bildbearbeitung. Man muss sehr vieles sehr selektiv verstärken, ohne Anderes überzugewichten oder gar zu zerstören. Dazu sind Maskentechniken ein muss. Nach der Gewinnung der Rohbilder ist das dann der größte Teil, der im wesentlichen nur mehr von der eigenen Vorstellung und seinem Vermögen das auch umsetzen zu können begrenzt wird. Das ist ein wohl ewiger Prozess. Während man für die Technischen Aspekte nach einigen Tipps aus der Gemeinschaft sehr viel selber herum tüfteln kann, ist man bei der Bildbearbeitung sehr viel mehr auf eine funktionierende Community angewiesen, deren Tipps und Tricks einem wieder weiterbringen.
Hier ein Bild mit dem 75mm Objektiv:
Links unten M101 und Rechts unten: M51 wie man sieht sie sind auch mit normaler Brennweite auffindbar.
Auflösung
Unter normalen Umständen macht sich die Luft bei der normalen Fotografie nicht stark bemerkbar. Anders natürlich bei extremeren Tele auf größere Entfernungen, wo man sich schon mal bei Sonneneinstrahlung Luftschlieren zu sehen sind. Bei der Astrofotografie hat man da schon mit ganz anderen Schichtdicken zu tun: Im Zenit etwas über 10km, blicken wir Richtung Horizont sind es einige hunderte Kilometer dichte Luft. Dazu kommt noch Dunst und der Umstand, dass eine Auftrennung der Farben stattfindet. Ein weißer Stern hat dann auf einer Seite einen roten Rand, auf der anderen Seite einen blauen.
Dazu kommt: Leider gibt es meist in hohen Luftschichten starke Winde (Jetstreams), die die Luftschichten zusätzlich verwirbeln. Das ganze läuft unter Seeing. Das mindert natürlich auch die mögliche Auflösung. Auch da ist ein Mitteln vieler Bilder das Mittel der wahl. Zuvor wird natürlich versucht, aus den vielen Einzelbilder jene mit dem stärksten Unschärfen zu eliminieren.
Scharfstellen
Heutzutage sorgt der Autofokus für scharfe Bilder. Bei der Astrofotografie ist manuelles Scharfstellen gefragt. Bei längeren Brennweiten geht das mit Hilfe einer Bahtinovmaske recht einfach an einem hellen Stern. Je geringer die Brennweite, desto schwieriger wird es, weil der Stern ja immer winziger wird, und man bräuchte eine passende Bahtinovmaske, dafür kommt aber bei recht weitwinkeligen Objektiven dazu, dass sie eine größeren Schärfenbereich aufweisen. Die Situation wird aber durch die notwendige möglichst offene Blende verschärft. Offene Blende braucht man aber, weil man dann einfach mehr Licht einsammeln kann.
Das ganze wäre ja nicht so schlimm, einmal gut Scharfstellen, dann passt es die nächsten 2-3 Stunden Belichtungszeit. Leider ist das nicht so. In der Nacht sinkt normalerweise die Temperatur ab. Das führt zu einem verstellen der Schärfe. Also ist recht oft die Schärfe zu kontrollieren, gerade anfangs. In der Praxis ist es aber meist so, dass man an der Kamera sein Bildfeld schwer erkennen kann, weil man schlicht und ergreifend nichts sieht! Man braucht dann wieder einen Stern der hell genug ist zum Scharfstellen und muss erneut sein Objekt wiederfinden. Man braucht dann länger belichtete Testbilder mit sehr hoher ISO um eine Feineinstellung vorzunehmen. Das betrifft vor allem Fototracker, die man händisch verstellt. Bei guten Astromontierungen hat man es mit GoTo leichter. Wenn sie einmal gut eingestellt sind, findet man hinterher sein Objekt wesentlich leichter. Wenn man dann mal mit Schmalbandfiltern anfängt wird es dann extrem schwierig überhaupt ein geeignetes Objekt zu finden, um scharf zu stellen.
Für Teleskope gibt es Motorfokussysteme, die mithilfe eines Temperatursensors präzise einen vorher ermittelten Wert einstellen.
Das Problem der temperaturabhängigen Fokusänderung betrifft so gut wie alle. Einzig Systeme mit wesentlich temperaturstabileren Kohlefasertuben mit passendem Spiegel (Pyrex oder Quarz) und Stabilem Okularauszug verstellen sich praktisch kaum. Zum Glück trifft das alles auf meinen „Newton ohne Namen“ zu.
Störungen im Optischen System
Sehr gute Linsensysteme sind meist recht gut korrigiert, sodass möglichst alle Farbstrahlen im selben Brennpunkt landen. Die extreme Streckung der schwächsten Bildanteile bringt hier allerdings wieder vieles ans Licht, das man so nicht sieht. Jede Grenzfläche einer Linse, jeder Reflex am Gehäuse wird natürlich auch sichtbar. Und jede Linse kostet Auflösung. Da kommen Spiegelsysteme ins Spiel. Das tolle daran ist: Sie sind Farbrein, jede Lichtwellenlänge landet im selben Brennpunkt. Je größer der Spiegel (die Öffnung) desto mehr Licht wird gesammelt und die Auflösung steigt auch.
Eine „Linsen“ Teleskop mit mit 200mm Öffnung ist kaum bezahlbar, ein Spiegel mit 200mm schon…..
Bildstörungen wie Staub am Sensor fallen in normalen Bildern kaum auf, außer man hat eine uniforme Fläche (wie z.b. Himmel) und bei kleinere Blende. Jedes Objektiv hat auch einen mehr oder weniger großen Helligkeitsabfall gegen den Rand. Bei der Astrofotografie braucht man aber ein möglichst „flaches“ Bildfeld. Also müssen diese Bildfehler herausgerechnet werden. Das wird mit sogenannten Flat Bildern bei der Bildkalibrierung erreicht.
Echte Farben?
In der normalen Welt, weiß jeder, was in etwas stimmig an Farben ist, wir sind darauf konditioniert. Alles was abweicht von dieser Erfahrung erzeugt eine Unstimmigkeit. Selbst wenn wir nicht genau wissen was an diesem Bild „falsch“ ist. Selbst unser an Dunkelheit angepasstes Auge sieht bei einem Blick durch ein größeres Teleskop so gut wie keine Farben. Das rote Leuchten des Wasserstoffs liegt schon in einem so dunklem roten Bereich, dass wir kaum mehr wahrnehmen können. Unsere Digitalkameras filtern diesen Bereich sogar schon zu 2/3 heraus. Selbst wenn wir uns im dunklen Weltraum befänden und auf den sehr hellen Orion Nebel zusteuern würden, wir würden das schwache rote Leuchten kaum sehen. Je näher wir kommen, desto mehr wird das Leuchten untergehen. Es sind ja bloß ein paar 100- maximal 10.000 Atome/Moleküle/cm3 an Wasserstoff im ansonsten noch etwas dünnerem Weltall. Normale Astrofotos zeigen dieses Leuchten sehr stark verstärkt in Rot. Dann kommt oft noch Sauerstoff vor, bei 501nm, das unsere Kameras Blau zeigen. Sterne habe ein kontinuierliches Spektrum, das temperaturabhängig ist. Kühle Sterne sind rötlicher, heiße weiß/blau.
Einen automatischen Weißabgleich wird jede Kameraelektronik überfordern, spätestens dann wenn so gut wie kein neutraler Himmelshintergrund im Bild zu finden ist. Den Weißabgleich macht man eben selbst, zuerst den Hintergrund auf neutral, dann macht man sich einen Umstand zu nutze, der weitgehend passt: Im Durchschnitt sind die Sterne weiß. Heute verfügen wir aber über wesentlich genauere Photometrische Prozesse: Zuerst wird das Bildfeld „astrometriert“ also festgestellt, welchen Ausschnitt am Himmel haben wir vorliegen. Anhand von Leitsternen im Bildfeld deren Lichtzusammensetzung bekannt ist, kann dann das Bild korrigiert werden. Ist eine eigene Wissenschaft, aber man ist zumindest schon mal recht in der Nähe der waren Farben.
Der Rest der Möglichkeiten geht aber dann schon sehr in Richtung Falschfarben. Man kann ja jeden der Farbkanäle beliebigen Kanälen zuweisen oder einmischen. Sehr bekannt die „Hubble Palette“ bestehen aus dem Roten Licht der Wasserstoffs, dem noch tief roteren Leuchten von Schwefel und dem blauen Leuchten des Sauerstoffs. Das hat überhaupt nichts mehr mit dem „natürlichen“ Farbspektrum zu tun, aber man erkennt gewisse Strukturen besser an solchen Falschfarbenbildern. Eine durchaus gängige Praxis im Wissenschaftlichen Bereich.
Massenware
Fotoapparate und Optiken sind Massenware. Das ist nichts negatives, sondern bringt eher Vorteile: Günstiger Preis und recht gleichbleibende Qualität. Dagegen sind „Fernrohre“ ja fast schon Einzelanfertigungen. So passt einfach eine beliebige Fotooptik einfach an den gleichen Anschluss an den Fotoapparat, oder wenn sie einen anderen Anschluss haben, mit einem entsprechenden Adapter. Durch den Anschluss wird u.a. der Richtige Abstand der Linse zum Sensor bestimmt.
Bei Fernrohren ist das schon schwieriger. Man muss den richtigen Abstand schon herausfinden. Ist der falsch, kommt man nicht in den Fokus. Schlimmer noch: Ist der am kurzen Ende und man will dann mal ein Filter dazwischen einbauen, kann es sein, dass man dann eben nicht mehr in Fokus kommt. Die übliche Norm wie 2″ (2 Zoll) oder 1,1/4″ sind lediglich eine Angabe über den Durchmesser und sagt nichts über den notwendigen „Backfokus“ des Systems. Es gibt dann auch noch Linsen, die die Vergrößerung erhöhen (nennt sich Barlow Linsen) aber auch Reduktoren, die die Brennweite verkürzen und damit die Lichtstärke erhöhen. Ob die eigene Optik nicht schon aufgrund mangelnder Öffnung vignettiert steht auf einem anderem Blatt. Da wir mit den FT Sensoren aber einen kleineren Sensor einsetzen ist das nicht ein ganz so großes Thema, wie bei großformatigeren Sensoren. Um eine nicht vermeidbare Bildfeldverzerrung auszugleichen (=runde Sterne bis in die Ecken) gibt es Flattener. Auch hier muss man dann noch den korrekten Abstand zum Sensor finden.
Egal welchen Adapter wir einsetzen: Sind sie sehr gut (und nur solche wollen wir verwenden!) sind sie nicht gerade billig und sie habe ihr genau definiertes Einsatzgebiet. Sie sind sehr spezifisch für ein spezielles Fernrohr (System/Brennweite), an Anderen eben nicht geeignet, auch wenn man sie von den Durchmessern her dazwischen setzen könnte.
Wenn man Glück hat, findet man jemanden, der die gleiche Konstellation zum Laufen gebracht hat oder hat ein Fachgeschäft, dass es abschätzen kann ob es gehen könnte oder geht.
Man kann ansonsten sehr schnell sehr viel Geld versenken…….
Universalität
An sich kann man mit jeder Standard Fotoausrüstung so ziemlich alles versuchen, von Nahaufnahme als auch weite Landschaftsübersichten. Es gibt natürlich dann extra darauf spezialisierte Linsen, aber das hat Zeit. Sie verfeinern halt dann das Ergebnis.
Schwieriger ist es da schon in der Astrofotografie. Da heißt es „jedes Gerät hat seinen Himmel“. Die nutzbaren Brennweiten sind halt begrenzt.
Praktischer Weise wird es aber sowieso schnell dadurch begrenzt, dass es sehr schnell sehr sehr teuer wird, aber nicht nur dass: Es wird sehr schnell sehr sehr unhandlich.
Sind wir mit dem FT Sensorformat bei einer Sensorgröße, bestimmt das unseren Abbildungsmaßstab. Wer Kameras unterschiedlicher Sensorgröße einsetzt, ist hier flexibler, denn er bewegt sich ja bei einem „Cropfaktor“ zwischen x1 (KB/Vollformatsensor) und x2 bei FT Sensoren. Nur der Anspruch an die Optik die ja einen großen Sensor qualitativ gut ausleuchten muss sind natürlich um vieles höher. So ist eine „Cropkamera“ oder unser FT Sensor wohl ein guter Kompromiss.
Für den Einstieg bei größeren Brennweiten kommt an sich sowieso nur dann entweder ein Linsenfernrohr (APO) oder Spiegelteleskop (Newton) in Frage. Damit die Belichtungszeiten pro Bild nicht ausufern sollten sie so Lichtstark wie möglich sein. Nicht außer Acht lassen sollte man, dass mehr Brennweite die Probleme potenziert hinsichtlich geforderter Präzision bei der Nachführung.
Wer allerdings vor hat, sich der Planetenfotografie zu widmen kann sich auch bei RC oder SC Teleskopen umsehen, denn er braucht so viel wie möglich Brennweite, Lichtstärke spielt hier eine Untergeordnete Rolle. Und er kann den Fotoapparat eher vergessen: Es braucht andere Kameras und eine Laptop um möglichst viele Bilder der kleinen aber sehr hellen Planeten zu sammeln.
Für die verschiedenen Objekttypen braucht es dann oft auch komplett andere Methodik der Bildgewinnung und deren Aufbereitung zur finalen Ausarbeitung. Das macht man nicht mehr so auf die Schnelle…. Man wird nur richtig Gut wenn man sich längere Zeit intensiv damit beschäftigt. Und wie immer: Auch in Übung bleibt.
Zeitaufwand
Fotografie an sich geht sehr schnell. Will man aber dann noch die Bildidee weiter verbessern, wird man um ein genaueres Planen nicht herumkommen.
Outdoor wir es dann auch in der „normalen“ Fotografie aufwändig: Der Sonnenstand, die Jahreszeit will geplant sein. Das ist aber (leider) meist nicht mehr so üblich, aber wird meist der Unterschied zwischen Knipsbild, guten Bild oder Wahnsinnsbild sein.
Bei der Astrofotografie kommt man aber sehr schnell drauf, in größeren Zeiträumen zu denken. Je weniger mobil man sein kann, desto mehr ist man angewiesen, dass zum Richtigen Zeitpunkt alles passt.
Bei Deep Sky ist ein dunkler Himmel Voraussetzung (zumindest für den Einsteiger). Den gibt es nur außerhalb von Städten und nur während mondloser Nächte. Dazu muss es auch frei von Wolken oder Dunst sein. Das „Seeing“ sollte auch stimmen, vor allem bei Planeten und Mondfotografie. Im Jahreszeitlichen verlauf sehen wir nur bestimmte Teile des Sternhimmels. Der Rest ist da, wo dann die Sonne gerade steht und ist daher in der Dämmerung und am Tag natürlich nicht mehr erreichbar. Ebenso schwankt über das Jahr die Tageslänge.
Im Winter ist es sehr lange dunkel, aber leider meist sehr dunstig und feucht. Liegt Schnee, ist es selbst in Neunmondnächten bedingt durch die Lichtverschmutzung sehr hell. Das Frühjahr ist die beste Zeit, was Seeing betrifft und die Luft recht drocken. Im Sommer wird es gerade mal für 1-3 Stunden dunkel genug, im Norden Europas dann nie.
Weil aber ein Bild aus möglichst vielen Belichtungen zusammengesetzt werden, ist es egal, wann sie gemacht wurden. Man kann also Belichtungen über Tage/Wochen/Monaten/Jahren verwenden. Selbst von verschiedenen Geräten.
Der Himmel ist voll von tollen Objekten, aber die richtig Großen findet man im Süden in Milchstraßennähe. Objekte in Horizontnähe gehen im Dunst unter. Um sie genügend hoch am Himmel zu haben muss man schon sehr weit südlich, besser auf die südliche Halbkugel fahren. Da hin zu fahren, mitsamt seinen 50-70kg Ausrüstung wird schwierig und teuer. Fehlt ein entscheidendes Teil – geht nichts. Daher ist hier der gangbarste Weg: StarAdventurer ins Reisegepäck und mit Fotolinsen Widefieldbilder. Oder auf eine der „Astrofarmen“ nach Namibia oder in die Alpen und die Geräte mieten.
Mittlerweile gibt es aber auch um die Erde verteilt Remote Sternwarten. Je nach Gerätschaften ergibt sich dann ein Preis den eine Stunde Belichtungszeit kostet, so gegen 80-100 US$). Das hat den Vorteil, man greift bequem via Internet zu, erstellt den Job. Während man schläft, werden die Bilder angefertigt und sind dann versandbereit.
Wozu das Ganze?
Ein verbindender Aspekt ist wohl der: „Es geht nichts über ein selbst gemachtes Bild“
Denn perfekte Bilder in hoher Auflösung kann man im Internet mittlerweile überall recht leicht bekommen….
M27 – Hantelnebel
hohe Auflösung auf AstroBin
M27 ist bei uns einer der hellsten und relativ großen Planetarischen Nebel. Von der Größe ist er um 8 Bogenminuten groß. Der Mond hat 30 Winkel Minuten, unser Auge hat bei einer Winkelminute seine Auflösungsgrenze, Jupiter/Venus kommen fast in diesen Bereich.
Die Entfernung beträgt etwas über 1000 Lichjahre. Ein Stern hat am Ende seiner Lebensdauer einen großen Teil seiner Gashülle abgestoßen. Zurück blieb im Zentrum der mag+14 schwache weiße Zwerg, dessen Strahlung (er hat 100.000 Grad) das Gas zum Leuchten anregt: Wasserstoff rot (bei 656nm) und Sauerstoff bei 501nm in blau (O-III).
Man findet ihn im Sommer zwischen den Sternen Altair und Deneb unterhalb des Kopfsterns Albiro im Sternbild Schwan.
Filterexperimente am M27
M27, Hantelnebel wie in unserem Sprachraum genannt wird, ist eines der großen Objekte am Sommersternhimmel. Daher habe ich ihn für weitergehende Experimente herangezogen:
Zunächst mal möglichst viele Einzelbilder zu sammeln in unterschiedlichen Nächten und mit einer Modifizierten und Unmodifizierten Kamera. Außerdem was herauskommt, wenn ich das Castell UHC Filter verwende und bei hellerem Mondlicht die Bilder mache.
Hier mal das vorläufige Ergebnis:
Unmodifizierte Kamera (E-M10 MarkII)
[FN, E-M10.II ISO800 16x4min] – hohe Auflösung auf AstroBin
Klarglasmodifizierte Kamera (E-PL6 + UVIRCut Filter)
[FN,E-PL6 78x4min ISO800] – hohe Auflösung auf AstroBin
Klarglasmodifizierte Kamera (E-PL6 + Castell UHC + UVIRCut Filter)
[FN, E-PL6mod ISO800 91x4min Castell UHC Filter+UVIR Cut] bei Halbmond+3 Tage – hohe Auflösung auf AstroBin
Beim ersten Bild mit einer „normalen“ unmodifizierten Kamera habe ich leider nur relativ wenige brauchbare Bilder erhalten (16×4 Minuten), aber letztlich war das Ergebnis gar nicht so schlecht. Auch die roten H-alpha Anteile werden durch den in den Olympus Kameras verbauten Filter nicht ganz blockiert und so kann man durch selektive Erhöhung der Farbsättigung doch einiges hervorholen.
Das zweite Bild war mit meiner klarglasmodifizierten Kamera. Hier konnte ich über 3 Nächte 78×4 Minuten Belichtung sammeln. Da jetzt auch alles an H-alpha (rotes Leuchten des Wasserstoffs) durchgelassen wird, ist hier mehr zu sehen.
Beim 3. Bild, dass sogar bei hellerem Mondlicht aber mit UHC-Filter gemacht wurde erreichte ich schon in Summe 5,1 Stunden Gesamtbelichtungszeit (91×4 Minuten). Durch diese langen Belichtungszeit, und das selektive Filtern auf das blaue Sauerstofflicht und rote Wasserstofflicht beginnen sich auch die schwächeren Ausläufer etwas abzuzeichnen. Das Bild ist zu meiner Überraschung auch relativ farbneutral geworden. Aber das schreibe ich meiner zwischenzeitlich schon besseren Kenntnisse der Bildbearbeitung in PixInsight zu.
Da andere Astrofotografen gerade auch erste Schritte in Richtung „Schmalbandfotografie“ machten, dachte ich mir: Es wäre praktisch, ein Filter zu haben, dass gleichzeitig nur H-alpha und O-III (Sauerstoff – blau) vereinigt. Dann könnte man das bei unsere „normalen“ Kameras beides gleichzeitig nutzen. Als ich mir die Filtercharakteristiken genauer ansah, fand ich heraus, dass genau mein Castell UHC Filter eine solche Charakteristik zeigte. Ich kaufte es ganz Anfang meine Astrophotokarriere (wie es viele glauben, dass Filter eine schnelle Lösung bei Lichtverschmutzung bringen). Bei den ersten Versuchen am Lagunennebel und meinen bescheidenen Möglichkeiten in der Bildbearbeitung brachte ich natürlich kein farbneutrales Bild zustande (fehlte doch der grüne Lichtanteil), weshalb ich es fortan nicht mehr verwendete. Auch ist es ein typische Filter für visuelle Anwendung, bei aufgehellten Himmel, wo es an solchen Objekten den Kontrast (daher UHC -ultra hight contrast) erhöht und sie sich besser abheben. Gut: Visuell sieht man da ja meist sowieso enttäuschend wenig….auch das Visuelle beobachten will gelernt sein, schnell mal rein sehen ist da nicht, selbst wenn es eines der hellsten Objekte ist.
Transmissionkurve des Castell – UHC
(1)
Unser sehen (und das der Fotoapparate) spielt sich im Frequenzbereich zwischen 400 – 650nm ab. Darüber hinaus sieht unser Auge schon etwas, aber halt nur wenig, und die Kameras habe einen Filter vor dem Sensor verbaut, der eher nur diesen Bereich durchlässt.
(2) + (5 + 6)
Das Leuchten der Gasnebel, allen voran das rot des angeregten Wasserstoffs (=H-alpha, H-α Linie) ist bei 656nm zu finden. Also schon oberhalb des Bereiches, wo die Filter der Kameras mehr oder weniger stark sperren. Bei den Filter der Olympus Kamera zu 2/3. Daher modifiziert man oft die Kameras, indem man diesen Filter ersetzt und so die Empfindlichkeit im Langwelligem Bereich zu erweitern.
Etwas über dem H-α (5) liegt dann noch S-II (Schwefel) (6).
(4)
Die Bande des angeregten (ionisierten) Sauerstoffs (O-III) liegt bei 501 nm liegt also im blauen sichtbaren Bereich.
(3)
Die (herkömmliche) Lichtverschmutzung liegt zum großen Teil in diesem Bereich: grün/orange der Quecksilber Hochdruck und Natrium Dampflampen. Die jetzt immer mehr einsetzten LED Beleuchtungen haben unterschiedliche Banden und es wird spannend wie es sich weiterentwickelt.
Noch etwas kann man der Durchlässigkeitskurve ansehen:
Für visuell Zwecke ist der Durchlass im IR unerheblich, aber an komplett offenen Kameras (wie meine klarglasmodifizierte Kamera) muss das ausgeblendet werden, weil Digitale Sensoren stark im Infraroten empfindlich sind. Ganz im Gegensatz zum Fotofilm, der besonders im UV Bereich empfindlich waren, deshalb die damals nötigen UV Filter (Skylight Filter), die den Violett stich am Himmel oder Schnee, vor allem in großen Höhen verhindern sollten, bei der jetzigen Digitalfotografie aber gänzlich unnötig sind.
Für die Beobachtung gibt es abgemilderte Formen als CLS, Neodym oder wie immer sie genannt werden. Sie lassen mehr Licht im grünen durch und versuchen speziell bei den Banden der Lichtverschmutzung zu schneiden. Da sie auch IR Durchlassen, gibt es davon auch spezielle mit dem Zusatz „CCD“.
Da sie mehr grünes Licht durchlassen, ist es da leichter einen stimmigen Weißabgleich zustande zu bringen.
Das bestechende am Castell UHC ist aber natürlich der relativ enge Bereich bei den wichtigen Emissionslinien der Gasnebel, sodass sie viel Störlicht, z.b. vom Mond auch elimieren. Dadurch kann man schon mal bei Mondlicht versuchen zu belichten.
Das ist der Vorteil der sogenannten Schmalbandfotografie. Hier macht man die Bilder dann durch entsprechende Filter, die nur mehr das Licht der bestimmten Gase durchlassen. Das sind dann die H-α, O-III, S-II oder exotischere wie H-ß etc.
Damit kann man dann wirklich bei hellem Mondlicht oder stark Lichtverschmutzen Bereichen ( z.b. Herwig – aus der Wiener Innenstadt heraus!) Fotografieren. Man kann mit einzelnen Banden auch seine normalen „RGB“ Bilder anreichern und so die schwachen Nebel besser zur Geltung zu bringen.
Mit Farbkameras hat man allerdings ein Problem: Es ist ja über den Sensoren (die ja an sich nur Helligkeitsempfindlich sind) Farbfilter angebracht. Meist als „Bayer Matrix“ Und zwar jeweils Rot/Grün/Grün/Blau, aus denen dann das eigentliche Farbbild errechnet wird. Das bedeutet erstens einmal, dass ein 16 MPixel Sensor an sich nur wie eine Auflösung eines 4 MPixel Sensors entspricht. Bei der Belichtung mit einer bestimmten Lichtwellenlänge wie z.b bei O-III oder H-α wird dann von 4 Pixel auch nur eines beleuchtet. Bei O-III das blaue, bei H-α das Rote.
Deshalb erreicht man schwarz/weiß Kameras, wo über den Sensoren diese Farbfilterchen fehlen eine wesentlich bessere Auflösung. Hat allerdings dann den Nachteil, dass man dann für „normale“ Farbbilder mindestens 3 verschiedene Belichtungen braucht. Einmal eben für jeder der 3 Farben: Rot/Grün/Blau. Solange man die nicht hat, kann man kein echtes Farbbild zusammensetzen.
Lacerta ED-APO 72/432
Ende 2017 besorgte ich bei Teleskop-Austria (=Lacerta) den kleinen ED-APO mit Flattener.
Er soll die Lücke zwischen den Fotolinsen und dem 800mm Teleskop schliessen. Und natürlich auch etwas praktische Erfahrung mit „Linsenfernrohren“ ermöglichen.
Mittels mFT/2″ Adapter ist er leicht an die Kamera zu adaptieren. Als Tele kann man ihn natürlich auch einsetzen. Wie immer alles sehr massiv gebaut.
Hier beim ersten schnellen Versuch am Orion (30 Sek. ISO800 an unmod. mFT Kamera)
Da ich den Kleinen auch guiden will brauche ich eine sogenannte Spring Load kupplung. Auch das bietet Lacerta natürlich an. (kup2).
Am APO sind diverse Löcher mit kleinen M5 Kunststoffschrauben verblindet. sowohl am dicken als dünneren Ende. Da aber die Rundung dieser Schnellkupplung genau dem kleineren Durchmesser entspricht, reicht eine Schraube, um sie sicher zu fixieren. Im Baumarkt habe ich mir dazu eine Senkschraube mit M5/12mm besorgt. Da geht sich schön aus.
Kürzlich folgte das 2nd Light: Ein Kurzbelichter (nur 1 Minute bei ISO800) und ungeguidet auf AZ-EQ6 am Andromeda
Setup dazu
Brennweiten und Objektgrößen
Brennweiten vs Bildwinkel
Jeder kennt natürlich die Brennweite aus der Fotografie. Früher hatte man normalerweise eine „Sensorgröße“ nämlich den des Filmes: 35mm KB (Kleinbildformat). Mit Einführung der Digitalen Sensoren, die verschiedene Größen haben konnten war dann plötzlich sehen, dass z.b. ein Normalobjektiv (50mm KB) nicht mehr die selbe Objektivbrennweite bedurfte.
Ein kleinerer Sensor nimmt ja praktisch nur einen Ausschnitt aus dem Bild heraus, daher ist es wie mehr Brennweite.
Die heutigen „Vollformat“ KB Großen Sensoren gibt es natürlich noch, aber werden immer mehr ein Nischendasein fristen ;-). Olympus hat mit seinem Sensorformat FT ( 4/3 oder eben „Four Thirds„) einen offenen Standard geschaffen den auch Panasonic benützt. Dessen Sensor misst gerade mal 1/4 des KB Formates Daraus ergibt sich ein Faktor von 2, um Objektivbrennweiten zu vergleichen.
Ein 50mm (KB -Normalobjektivbrennweite) ist beim Olympus System dann mit einem 25mm erreicht.
Um Objektive besser vergleichen zu können wäre natürlich der Bildwinkel den sie abbilden das bessere Maß.
Hier ein paar Brennweiten/Bildwinkel (in Grad) von Objektiven am FT Sensor:
800mm: 1,55° 280mm: 4,42° 200mm: 6,2° 100mm: 12,35°
75mm: 16,4° 60mm: 20,44° 50mm: 24,4° 30mm: 39.65°
14mm: 75.38° 12mm: 84.06° 7mm: 114,18°
Umgekehrt: Um den Bildwinkel meines 800mm Teleskops an einem Kleinbild großen Sensors zu bekommen bräuchte es 1600mm Brennweite. Das ist schon recht unhandlich. Wer sich jetzt noch überlegt, dass es auch noch möglichst Lichtstark sein soll, was einfach Öffnungsweite betrifft nicht nur unhandlich, sondern auch groß und schwer. Wenn es dann auch noch um höchste Qualität geht, um vieles teurer. Wie bei den Fotolinsen: Lichtstärke (große Öffnung) bei extrem guter Abbildung wird extrem teuer.
Abschätzung der Bildwinkel
Zunächst mal wie kann man mit einfachen Mittel die Ausdehnung eines Objektes messen. Da gibt es verschieden Tricks mit der Hand am ausgestreckten Arm:
1° = Dicke des kleine Fingers 2° Daumenbreite 3 Finger: 5° Faust: 10° etc.
Einfach mal hier der Bilderlink auf Googel zum Thema
Wie große erscheinen uns jetzt die Objekte am Himmel ?
Mond und Sonne 0,5 Grad oder 30 Winkelminuten
1 Grad sind ja 60 Winkelminuten und 1 Winkelminute sind 60 Winkelsekunden (arc sec)
Bei ca. 2200mm Brennweite am Kleinbildsensor ist also Mond und Sonne formatfüllend. Bei FT Chipgröße sind das dann eben 1,1m. Bei mir mit dem 800mm Teleskop + einen 1,4x Telekonverter ist das nahezu erreicht. Ein 1,4x Telekonverter kostet eine Blende, also benötigt man doppelt soviel Belichtungszeit also ohne oder doppelte ISO.
Venus (wenn sie uns am nächsten ist) nimmt in etwas 1 Bogenminute ein, das entspricht auch in etwa das Auflösungsvermögen unserer Augen, Jupiter ist mit max. 47 Bogensekunden nicht sehr viel kleiner. Saturn mitsamt dem Ring auch in etwa. Saturn und Mars messen zwischen 25 bezw, 20 Bogensekunden, Neptun nur noch 2,3.
Albiro, der Kopfstern des Sternbild Schwan, ist wohl mit seiner Orangen und Blauen Komponente als einer der schönsten Doppelsternsysteme. Sie sind 0,5 min oder eben 30 Winkelsekunden voneinander entfernt. Also mit einem Teleobjektiv auch schon leicht zu trennen. Ebenso schön, aber nur mehr mit 10 Winkelsekunden Abstand ist Almach (Almaak) im Sternbild Andromeda leicht zu finden.
Neben dem hellen Stern Wega im Sternbild Leier findet man das Epsilon-Lyr system. Wer wirklich scharfe Augen hat, kann e1 und e2 trennen. Aber beide Sterne sind in sich auch noch Doppelsterne, und die sind nur ca. 2,5 Winkelsekunden voneinander getrennt. Nur in größeren Teleskopen kann man das trennen.
Im Winkelsekundenbereich liegt aber auch das, was unser Erdatmosphäre erlaubt. Bei mir laut den Seeingvorhersagen liegt es zwischen 1,5-3 Winkelsekunden. Wer mal den Mond bei großen Vergrößerungen betrachten konnte sieht das Flimmern.
Durch Auswahl der besten Bilder und stacken vieler Bilder kann man aber hier die Auflösung erhöhen.
Bei Teleobjektiven komme ich so auf ca 5-7 Winkel(Bogen) Sekunden beim Teleskop auf 0,6-0,8 Bogensekunden pro Pixel.
Die größten der nahen Sterne, die mit heutiger Technik aufgelöst werden können, Beteigeuze und Antares sind in etwa 0,04 Winkelsekunden groß.
Einige der bekannten Objekte am Himmel sind um vieles größer als uns der Mond am Himmel erscheint. Da ist oft der Einsatz einer guten Fotolinse schon ausreichend.
Bei Planeten benötigt man aber generell sehr hohe Brennweiten. Zum Glück sind sie aber recht hell. Aber Digitalkameras sind bei diesen Objekten sowieso nicht mehr optimal, weil man hier eher sehr viele Bilder, die nachher gemittelt werden benötigt. Das geht mit anderen günstigeren dafür ausgelegten Kameraköpfe besser. Und wir sprechen hier von 50-70 Bilder pro Sekunde und das ganze über eine Minute lang….
Das derzeitige Arbeitstier der ambitionierten Hobby Astrophotografen bildet noch immer der Kodak CAF8300 CCD Chip. Der wurde damals von Olympus in den Konsumer E-300 und E-500 DSLR Kameras verbaut. Er zeigt also das selbe Bildfeld wie unsere FT-Kameras.
Immer mehr kommen jetzt die CMOS Chips von Sony zum Einsatz. Der Panasonic CMOS Chip der in der E-M1 zum Einsatz kommt ist z.b. in den ZWO ASI1600 Kameras verbaut. Gekühlt sind diese Sensoren sehr gut, ungekühlt würde ich weder meine E-300 noch die E-M1 einsetzen wollen. Aber nur weil ich mit meinen anderen Kameras mit dem SONY CMOS bessere Alternativen habe….